基因点突变载体构建
服务详情
交付标准 | 1.质粒图谱2.质粒测序结果3.质粒操作说明4.质粒(pegRNA+sgRNA三组),辅助质粒(混合管) |
---|---|
周期/价格 | 在线咨询 |
服务优势
高效的编辑系统
高效pegRNA设计算法系统
增强型的Cas9n-RT编辑酶系统:
专业的技术支持团队
质粒图谱
Advantage and Characteristic
Optimazied Strategy
Optimazied Strategy
Optimazied Strategy
Optimazied Strategy
参考文献
HEK293T细胞中实现CFTR基因的点突变
囊性纤维化(Cystic Fibrosis, CF)是一种由跨膜传导调节蛋白(CFTR)双等位基因功能丧失突变引起的常见的遗传性致命疾病。过去已有多种CFTR调节剂疗法获得批准,但这些高效调节剂(HEMTs)只适用于至少有一个F508del等位基因或其他响应性CFTR突变的患者,无法为许多(超)罕见的CFTR突变患者提供治疗方法。随着科学研究发展,人们发现基因治疗能为这些突变提供了新的治疗机会。特别是最近开发的基于CRISPR的系统——prime editing(PE),为治疗遗传性疾病开辟了新的时代。Prime editing能够在患者的染色体上原位“重写”和纠正突变,提供了治疗单基因疾病如CF的新机会。
在这篇文章中,研究人员利用CRISPR-Cas9技术设计了针对CFTR基因中L227R和N1303K两种突变的prime editing策略,并在HEK293T细胞中构建了稳定表达3HA-L227R-CFTR和3HA-N1303K-CFTR的细胞模型来评估prime editing的效果。在开发的DETECTOR机器学习算法保证效率和准确率的情况下,研究人员进一步进行基因和功能校正的评估,结果显示编辑效率最高可达25%,纠正后的CFTR蛋白在糖基化、定位和离子通道功能方面得到了显著恢复。这些结果也在原代细胞模型试验中得到验证。此外,利用全基因组评估分析,研究员们并未发现显著的脱靶编辑事件,证明了prime editing的高保真度,并且该研究的临床相关性与安全性评估也得到通过。总的来说,这项研究展示了prime editing技术在纠正CFTR基因突变和恢复CFTR蛋白功能方面的潜力,为囊性纤维化的治疗提供了新的思路和方法。